The PASPORT Motion Sensor accurately measures the position, velocity, and acceleration of a target. It can be used to track the motion of balls, carts, people, and more.
See the Buying Guide for this item's required, recommended, and additional accessories.
Product Summary
The PASPORT Motion Sensor is used to measure the position, velocity, and acceleration of a target. The Motion Sensor can be set on a desktop, mounted to a rod stand, or attached to a PASCO Dynamics Track. The ultrasonic, pulse-ranging technology has a switch-selectable Standard Beam or Narrow Beam that rejects false signals for cleaner data collection.
Features
- Measures position, velocity, and acceleration
- False Target Rejection Technology collects clean data
- Switch-selectable short range and long range settings
- Snaps onto PASCO dynamics tracks
- Mounts to rods for easy positioning
- 360° pivoting head
Applications
- Discover the relationship between position, velocity, and acceleration
- Measure the motion of large objects, including students
- Monitor the sinusoidal motion of a mass on a spring
- Study conservation of energy and momentum during collisions
How It Works
An electrostatic transducer in the face of the Motion Sensor transmits a burst of 16 ultrasonic pulses with a frequency of about 49 kHz. The ultrasonic pulses reflect off the target and return to the face of the sensor. The target indicator flashes when the transducer detects an echo. The sensor measures the time between the trigger and echo rising edges, then, it uses this time and the speed of sound to calculate the object's distance. To determine velocity, it uses consecutive position measurements to calculate the rate of change. It similarly determines acceleration by using consecutive velocity measurements.
Product Specifications
Minimum Range | 0.15 meters |
Maximum Range | 8 meters |
Resolution | 1 mm |
Maximum Sample Rate | 250 Hz |
Transducer Rotation | 360° |
Narrow Near/Far Switch Settings | For distances up to 2 meters to reject false target signals or ignore air track noise. |
Standard Near/Far Switch Settings | For longer distances up to 8 meters. |
Cable Length | 1.8 meter |
Mounting Options | Non-skid rubber feet for table mount |
Maximum Ranges at Higher Sample Rates | 1.72 m (at 100 Hz); 0.86 m (at 200 Hz); 0.69 m (at 250 Hz) |
Data Collection Software
This product requires PASCO software for data collection and analysis. We recommend the following option(s). For more information on which is right for your classroom, see our Software Comparison: SPARKvue vs. Capstone »
Interface Required
This product requires a PASCO Interface to connect to your computer or device. We recommend the following option(s). For a breakdown of features, capabilities, and additional options, see our Interface Comparison Guide »
Dedicated Datalogging with SPARK LXi2
Consider an all-in-one, touchscreen data collection, graphing, and analysis tool for students. Designed for use with wired and wireless sensors, the SPARK LXi2 Datalogger simultaneously accommodates up to five wireless sensors and includes two ports for blue PASPORT sensors. It features an interactive, icon-based user interface within a shock-absorbing case and arrives packaged with SPARKvue, MatchGraph!, and Spectrometry software for interactive data collection and analysis. It can additionally connect via Bluetooth to the following interfaces: AirLink, SPARKlink Air, and 550 Universal Interface.
Buying Guide
Recommended Accessories | P/N | Price |
---|---|---|
Motion Sensor Guard | SE-7256 | -- |
Motion Sensor Bracket | PS-2546 | -- |
Cart Adapter Accessory | ME-6743 | -- |
Elastic Bumper | ME-8998 | -- |
Experiment Library
Perform the following experiments and more with the PASPORT Motion Sensor.
Visit PASCO's Experiment Library to view more activities.
Newton's Second Law
In this lab, students use a motion sensor to determine the relationship between a system’s mass, acceleration, and the net force being applied to the system.
Newton's Second Law
In this lab, students will use force and motion sensors to study the relationship between the net force applied to an object, the acceleration of the object, and the object's mass.
Coefficients of Friction
A motorized cart is used to pull the friction trays in a controlled manner along the track, as a force sensor directly measures the frictional force. All parameters affecting the frictional force are investigated, including material,...
Newton's First Law
Determine how external forces affect an object's motion as summarized by Newton's 1st Law of Motion.
Coefficients Of Friction
In this lab, students use a motion sensor and a force sensor to determine the static and kinetic friction coefficients between two contacting surfaces.
Simple Harmonic Motion
In this lab, students will use force and motion sensors to determine the spring constant. Students will measure the spring extension created by three different masses suspended from the spring.
Newton's Second Law
Newton's Second Law is examined by measuring the resulting acceleration of a fan cart under two conditions: Variable force (while keeping the mass constant) and variable mass (while keeping the force constant).
Hooke's Law and Elastic Potential Energy
As the spring cart launcher is loaded, a force sensor and a motion sensor are used to measure the spring constant and the amount of potential energy stored in the compressed spring. Then cart is launched and its final kinetic...
Acceleration
In this lab, students will use motion sensors to represent motion as a change of position in graphical form.
Acceleration Due to Gravity
In this lab, students measure the acceleration of a cart moving down an incline, then, compare their measured value to the theoretical.
Intro to Measurement
In this lab, students will measure the period of a simple pendulum and use scientific methods to determine the relationships between the period of a pendulum and its length, the mass of the pendulum, and the amplitude of the pendulum’s...
Conservation of Momentum
In this lab, students will use pairs of motion sensors to explore the concept of momentum and its conservation during common types of collisions.
Support Documents
Manuals | ||
---|---|---|
PASPORT Motion Sensor Manual | English - 982.25 KB | |
Knowledge Base | ||
Graph matching on a SPARK LXi2 with a PASPORT Motion Sensor | Sep 29th, 2023 | |
How to change display language in MatchGraph | Sep 18th, 2023 | |
Principle of Operation - Motion Sensor | Apr 14th, 2022 | |
Troubleshooting PASPORT and ScienceWorkshop Motion Sensors | Dec 2nd, 2022 | |
Use MatchGraph software on an older Macintosh computer | Sep 18th, 2023 | |
Use MatchGraph software on an older Windows computer | Sep 18th, 2023 |