The Smart Cart is the ultimate tool for your physics lab and includes built-in sensors for measuring force, position, velocity, three axes of acceleration, and three axes of rotational velocity. Patent No. 10481173
- 1x Hook
- 1x Rubber bumper
- 1x Magnetic bumper
- 1x USB cable for charging
See the Buying Guide for this item's required, recommended, and additional accessories.
Product Summary
The patented Smart Cart is the ultimate tool for studying kinematics, dynamics, Newton’s Laws, and more. It is based on a durable ABS body with nearly frictionless wheels, just like our high quality PAScars. Now, we’ve added built-in sensors that measure force, position, velocity, and acceleration. The versatile Smart Cart can collect measurements on or off a track and transmit the data wirelessly over Bluetooth. In essence, it is a wireless dynamics cart that combines all the necessary sensors, without requiring any additional hardware.
Smart Carts are ideal for studying mechanics topics, such as kinematics and dynamics. The built-in load cells enable two Smart Carts to visually demonstrate Newton’s Third Law with ease. Additionally, built-in sensors for force and acceleration enable students to investigate Newton’s Second Law in minutes. Smart Carts truly are a physics lab on wheels, and now you can own the most advanced physics cart ever created, all without the restrictions of cables.
Features
- Built-in ±100 N force sensor
- 3-axis accelerometer
- 3-axis rotational velocity sensor
- Bluetooth® connectivity
- Rechargeable battery
- Motion encoder measures position and velocity on or off the track
- Magnetic bumper for force sensor
- 3-position plunger
- Mass tray
- Velcro® tabs
- Force sensor hook and rubber bumper
Applications
- Kinematics
- Newton’s Laws
- Impulse
- Conservation of Momentum
- Elastic and Inelastic Collisions
- Conservation of Energy
- Simple Harmonic Oscillators
- Magnetic damping
- Determining g using acceleration on an incline
- And much more!
What's Included
- 1x Hook
- 1x Rubber bumper
- 1x Magnetic bumper
- 1x USB cable for charging
Product Specifications
Optical Encoder |
|
Accelerometer |
|
Force Sensor |
|
Gyro Sensor |
|
Mass (without accessories) | 250 g |
Patent No. | 10481173 |
Connectivity | USB and Bluetooth 5.2 |
Logging | No |
Battery Type | Rechargeable LiPo |
Battery & Logging
Stored Data Points Memory (Logging) 1 | Not Supported |
Battery - Connected (Data Collection Mode) 2 | Up to 7 hr |
Battery - Logging (Data Logging Mode) 3 | Not Supported |
Battery Type | LiPo |
1 Minimum # of data points with all measurements enabled, actual results depend on enabled measurements.
2 Continuous use in a connected state until battery failure, actual results will depend on sample rate, active measurements, and battery condition.
3 Logging until battery failure, actual results will depend on sample rate, active measurements, and battery condition.
* Normal classroom use is the sensor in active use for 20min/lab for 120 lab periods/yr.
Data Collection Software
This product requires PASCO software for data collection and analysis. We recommend the following option(s). For more information on which is right for your classroom, see our Software Comparison: SPARKvue vs. Capstone »
Connectivity Options
This product can connect directly to your computer or device with the following technologies. No Interface required. See the following guide for details regarding device compatibility: Wireless Bluetooth Product Compatibility »
- Bluetooth Low Energy (BLE)
- Universal Serial Bus (USB)
Buying Guide
Recommended Accessories | P/N | Price |
---|---|---|
Cart Mass (Set of 2) | ME-6757A | -- |
Smart Ballistic Cart Accessory | ME-1245 | -- |
Smart Cart Vector Display | ME-1246 | -- |
Smart Fan Accessory | ME-1242 | -- |
Smart Cart Rod Stand Adapter | ME-1244 | -- |
Smart Cart Charging Garage | ME-1243 | -- |
Bumper Accessory Set | ME-9884 | -- |
Smart Cart Motor | ME-1247 | -- |
Replacement Parts | P/N | Price |
---|---|---|
Magnetic Bumper Set | ME-9885A | -- |
Micro USB Cable | PS-3584 | -- |
Also Available | P/N | Price |
---|---|---|
Smart Cart (Blue) | ME-1241 | -- |
USB Bluetooth Adapter | PS-3500 | -- |
Product Guides & Articles
Dynamics Cart & Track System Configuration
Dynamics Systems provide an engaging and affordable method for physics educators to teach a variety of complex concepts in Kinematics and Dynamics. We offer a wide range of carts and tracks that make it easy to design your ideal Dynamics System, while staying under budget. In addition to durable equipment, PASCO Dynamics Systems also include access to a wealth of downloadable lab acitivities designed to get students hands-on and experimenting with key physics concepts.
Smart Cart to Vernier Comparison
The Smart Cart may appear to be equivalent to competitors like Vernier’s Go Direct Sensor Cart–they include many of the same features and specifications–but several distinctions set the PASCO Smart Cart apart.
Experiment Library
Perform the following experiments and more with the Smart Cart (Red).
Visit PASCO's Experiment Library to view more activities.
Newton's Third Law
In this lab, students will investigate how two Smart Carts exert forces on each other in different scenarios. Using force sensors on each cart, students will compare force measurements to better understand Newton's Third Law of...
Inertia and Newton's Second Law
When you shake an object back and forth, you feel a “resistance” to the acceleration you are causing. We commonly refer to this as the “inertia” of the object. The Smart Cart, alone and then with extra masses on board,...
Newton's Second Law
The acceleration of a Smart Cart with Smart Fan Accessory is measured for varying forces, while keeping the mass constant. The Smart Fan is used to produce a thrust, and the Smart Cart’s sensors are used to measure both the...
Elastic Collisions
How can we predict the outcome of an elastic collision? A collision between two carts is nearly elastic, but not completely. In this experiment, you will push a red Smart Cart into a stationary blue Smart Cart and explore how...
Momentum and Impulse
How is the impulse imparted to an object in a collision related to the change in momentum of the object? Investigate the relationship between the change in momentum of a cart undergoing a collision and the impulse imparted to...
Acceleration on an Inclined Plane
What is the acceleration of an object down an inclined plane? What do the motion graphs of an object down an inclined plane look like? Galileo Galilei used inclined planes for his quantitative experiments into the nature of position,...
Rotational Statics
Students use the Smart Cart force sensor and tension protractors to demonstrate that the sum of the forces acting on an object in static translational equilibrium is equal to zero, and the sum of the torques acting on an object...
Newton's First Law
The purpose of this experiment is to determine how external forces influence the motion of a Smart Cart, either by itself, or together with a Friction Block, or tied by a string to masses hanging over a pulley. Analysis of this...
Blockly Extension: Making a Mass-o-meter
Students create a Blockly program that determines the mass of a Smart Cart and its contents based on measurements of the force and acceleration while the cart is moved back and forth. They modify the code to improve reliability...
Oscillation of a Cart and Springs
The period of oscillation of the cart and spring system is measured using the Smart Cart Position Sensor. The effect on the period is investigated when changing the spring constant, amplitude of the oscillation, and the mass of...
Graphing Motion
Students measure the position and velocity of a cart on a track to determine the relationship between position, velocity, and acceleration versus time graphs.
Newton's Second Law
How is an object’s acceleration related to the net force acting on the object? When the forces acting on an object are unbalanced, the object accelerates. Newton’s second law describes how an object’s acceleration is related...